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Task 1. Design and Synthesis of Multi-compound Green Inhibitors 

The team focused on developing and optimizing fatty acid-based green inhibitors derived 
from a variety of natural oil sources. The primary goal was to modify these fatty acids to enhance 
their corrosion inhibition efficiency. Specifically, the modifications aimed at transforming the fatty 
acids into water-soluble, surfactant-like inhibitors, thereby improving their dispersibility and 
enhancing their interactions with metal surfaces. By evaluating the corrosion inhibition 
performance of these modified fatty acid mixtures in comparison to a control sample, the study 
seeks to provide a deeper understanding of their relative effectiveness. Additionally, the research 
delves into the corrosion inhibition mechanisms of both unmodified (free) fatty acids and their 
surfactant-modified analogs, identifying similarities and differences in their modes of action. The 
ultimate objective is to generate valuable insights that will inform the design and development of 
more efficient, sustainable, and environmentally friendly corrosion inhibitors. 

 
Task 1.2: Synthesis and Characterization of Green Inhibitors from Renewable Feedstock  
 

• Synthesizing mixtures of free fatty acids through the hydrolysis of various bio-oils to 
serve as corrosion inhibitors. 

• Enhancing the corrosion inhibition efficiency of the produced inhibitors by incorporating 
polyethylene glycol to improve their performance. 

• Submitting an invention disclosure titled "Sustainable Water-Soluble Corrosion Inhibitor 
from Waste Cooking Oil via Fatty Acid Ethoxylation" to Arizona State University. 

 
 



   
 
 

 

 
 

 

Task 2. Simulation-based Inhibitor Optimization in Gas Gathering and Transportation Pipelines 

During this reporting period, we have made significant progress in Task 2, focusing on 
identifying high-risk corrosion locations in gas pipelines based on Internal Corrosion Direct 
Assessment (ICDA) and applying the AI-enhanced approach for more efficient prediction on 
short-distance inhibitor deposition with optimizing atomizer settings. The key activities are 
outlined below:  

 
Task 2.2: AI-assisted inhibitor optimization gathering and transportation pipelines 
 

• Established a framework for identifying high-risk locations and reinforcing corrosion 
prevention through targeted inhibitor injection. 

• Identified high-risk corrosion locations based on ICDA. 
• Investigated the effect of computational fluid dynamics (CFD) parameters on particle 

transport. 
• Optimized atomizer setting with an injection Control Network (ICN). 

 
Project Financial Activities Incurred during the Reporting Period: 
 
For Task 1, we supported 1 RA at ASU 
For Task 2, we supported 1 RAs at ASU 
 
Project Activities with Cost Share Partners: 
 
Engaged in discussions with the Technical Advisory Panel members to solicit recommendations 
for our team's research activities.  
 
Project Activities with External Partners: 
 
Conducted regular discussions with the Technical Advisory Panel, in addition to several separate 
meetings and email communications with individual advisory members.  
 
Potential Project Risks: 
 
Nothing to report. 



   
 
 

 

 
 

 

   

 

 

 

 

 

 

Appendix 1 
Technical Progress Description for Task 1 

 



   
 

 
 

 

Task 1. Design and Synthesis of Multi-compound Green Inhibitors 

 

1. Introduction 

Free fatty acids (FFAs) act as effective corrosion inhibitors by adsorbing onto metal 
surfaces, forming a protective barrier that limits the penetration of corrosive agents. These 
amphiphilic molecules possess a polar hydrophilic head (the carboxylic acid group, –COOH) and 
a nonpolar hydrophobic tail (a long hydrocarbon chain). The –COOH group strongly binds to metal 
surfaces, particularly steel, by interacting with Fe²⁺ or Fe³⁺ ions through chemisorption, ensuring 
a stable attachment to the metal. Once adsorbed, the hydrophobic tail extends into the aqueous 
environment, forming a dense monolayer that blocks the ingress of water, oxygen, and aggressive 
ions like chlorides. This dual functionality—anchoring to the metal via the head group and 
protecting the surface with the tail—enables FFAs to effectively inhibit corrosion in both neutral 
and acidic conditions. 

The corrosion inhibition efficiency of FFAs is largely influenced by their chemical 
structure, particularly the degree of saturation in their hydrocarbon chains. Saturated fatty acids, 
such as stearic acid (C18:0) and palmitic acid (C16:0), consist entirely of single carbon-carbon 
bonds. These acids are more thermally and chemically stable but tend to be less reactive. On the 
other hand, unsaturated fatty acids, such as oleic acid (C18:1) and linoleic acid (C18:2), contain 
one or more double bonds that create bends in their molecular structure. While these bends may 
reduce the packing density of the monolayer, they can also enhance flexibility and surface 
interaction, which may improve corrosion protection. 

Furthermore, FFAs differ notably from their soap derivatives. In soaps, the –COOH group 
is converted into a carboxylate salt (–COO⁻) when it reacts with a strong base like NaOH, 
increasing solubility and interaction with water. In contrast, FFAs largely remain non-ionized at 
neutral pH, making them less soluble in water. While this affects their transport and adsorption 
properties, it allows them to form hydrophobic, water-resistant films on metal surfaces, further 
enhancing their corrosion inhibition potential. 

2. Methodology 

2.1 Materials 

Soybean oil, canola oil, sunflower oil, olive oil, and castor oil were sourced from local 
suppliers and used as renewable feedstocks without additional purification. Polyethylene glycol 
(PEG-400, with an average molecular weight of approximately 400 g/mol) and concentrated 
sulfuric acid (H₂SO₄, ≥98%) were purchased from Sigma-Aldrich. Hydrochloric acid (HCl, 37%) 
was diluted with deionized water to prepare 1 M HCl solutions for corrosion testing. Analytical-
grade oleic acid was utilized directly as a model free fatty acid inhibitor for both comparison and 
modification purposes. All chemicals used were of analytical reagent grade. A36 carbon steel 
coupons, measuring 0.5 inches by 1.0 inch, served as the working electrodes in all corrosion 



   
 

 
 

 

experiments. Prior to immersion, the prepared coupons were carefully weighed using an analytical 
balance with a precision of ±0.1 mg. 

2.2 Synthesis of Free Fatty Acids Mixtures from Bio-Oils 

To extract free fatty acids from the selected bio-oils, a non-catalytic hydrolysis method was 
employed. Equal volumes (1:1 v/v) of each oil and deionized water were combined in a sealed 
stainless-steel autoclave reactor. The mixture was heated to 250°C and held at this temperature for 
30 minutes to facilitate thermal hydrolysis. After the reaction, the system was cooled to room 
temperature, resulting in phase separation. The upper aqueous phase was discarded, while the 
organic phase containing the free fatty acids was carefully collected and dried under vacuum to 
remove any residual moisture. No solvents or neutralizing agents were used in the process, 
preserving the green synthesis approach. 

2.3 Synthesis of Fatty Acid Methyl Esters (FAME) 

Fatty acid methyl esters (FAME) were synthesized via base-catalyzed transesterification 
of soybean oil and subsequently used as corrosion inhibitors. A molar ratio of 6:1 (methanol: 
triglyceride) was employed to ensure reaction completion. Based on the average molar mass of 
soybean oil (approximately 929 g/mol), 50 g of oil required approximately 14.85 g of methanol to 
maintain the 6:1 ratio. 

First, 1 g of potassium hydroxide (KOH) was weighed and dissolved in 14.85 g of methanol 
in a clean Erlenmeyer flask under continuous stirring. This formed a homogeneous methoxide 
solution. Separately, 50 g of soybean oil was weighed and added to the methoxide solution. The 
reaction flask was immediately sealed with aluminium foil to minimize methanol evaporation and 
stirred at 60 °C for 60 minutes. 

Upon completion of the reaction, the mixture was allowed to settle. Due to phase separation, 
the denser glycerol formed the lower layer, while biodiesel (FAME) formed the upper layer. The 
upper FAME-rich phase was carefully decanted. 

To purify the FAME, two post-treatment steps were performed: 

• Flash Evaporation: The decanted biodiesel was briefly heated to evaporate any residual 
methanol. 

• Water Washing: The FAME was washed with deionized water to remove remaining 
methanol and catalyst residues. The aqueous phase was separated after each wash. 

The purified fatty acid methyl esters were dried and stored in an airtight container at room 
temperature prior to use in corrosion inhibition experiments. 

2.4 Synthesis of PEG-Modified Fatty Acids (Surfactant-Type Inhibitors) 

The extracted fatty acids were chemically modified via esterification with PEG-400 to 
improve their solubility, stability, and interaction with metal surfaces. In a typical reaction, the 
fatty acid and PEG-400 were mixed in a molar ratio of 1.2:1 (fatty acid:PEG) and stirred 



   
 

 
 

 

continuously under a nitrogen atmosphere to prevent oxidative degradation. Sulfuric acid (2 wt% 
of the total mixture) was added as a catalyst to promote ester bond formation. The reaction was 
carried out at 110 °C for 5 hours in a three-neck round-bottom flask equipped with a reflux 
condenser, nitrogen inlet, and temperature control. The final product (a viscous, surfactant-like 
ester) was cooled to ambient temperature and stored in airtight glass containers for further testing.  

2.5 Corrosion Testing 

Corrosion inhibition performance was evaluated using three methods: weight loss 
measurements, Tafel polarization, and electrochemical impedance spectroscopy (EIS). All 
experiments were conducted at room temperature (25 ± 1 °C) using 1 M HCl solution as the 
corrosive medium. 

2.5.1 Electrochemical Corrosion Testing 

For corrosion testing and validation, the inhibitors were subjected to thorough testing in 
hydrochloric acid (HCl). The testing framework included electrochemical impedance spectroscopy 
(EIS), Tafel polarization, static weight loss measurements, EIS and Tafel polarization provided 
essential insights into the electrochemical behavior of the inhibitors, particularly their ability to 
reduce corrosion currents and enhance charge transfer resistance. Static weight loss tests measured 
the mass loss of carbon steel samples over time, offering a direct indication of the inhibitors' 
efficiency in mitigating corrosion under HCL media. The selected 10 inhibitors were tested. 

 

2.5.2 Electrochemical Impedance Spectroscopy (EIS) 

The interpretation of EIS data is typically facilitated using Nyquist and Bode plots, which 
graphically represent the impedance characteristics of the system. These plots can reveal: 

• Charge Transfer Resistance: Related to the ease with which electrons can move across 
the electrode/electrolyte interface. 

• Double Layer Capacitance: Reflects the capacitive behavior at the interface, influenced 
by the thickness and properties of the electrochemical double layer. 

• Warburg Impedance: Indicates diffusion-controlled processes, often seen in porous 
coatings or corrosion layers. 

Electrochemical Impedance Spectroscopy (EIS) tests were conducted to evaluate the 
efficiency of the shortlisted corrosion inhibitors. These tests were performed in ten different media: 

• Medium 1: 1 M HCl only (Control) 
• Medium 2: 1 M HCl + Free fatty acids from castor oil (Castor oil) 
• Medium 3: 1 M HCl + Free fatty acids from olive oil (Olive oil) 
• Medium 4: 1 M HCl + Free fatty acids from soybean oil (Soybean oil) 
• Medium 5: 1 M HCl + Free fatty acids from canola oil (Canola oil) 
• Medium 6: 1 M HCl + Free fatty acids from sunflower oil (Sunflower oil) 



   
 

 
 

 

• Medium 7: 1 M HCl + Fatty acid methyl ester (Fatty acid methyl ester) 
• Medium 8: 1 M HCl + Commercial Oleic Acid (Oleic acid) 
• Medium 9: 1 M HCl + PEG-modified castor oil fatty acids (PEG-Castor oil) 
• Medium 10: 1 M HCl + PEG-modified olive oil fatty acids (PEG-Olive oil) 
• Medium 11: 1 M HCl + PEG-modified soybean oil fatty acids (PEG-Soybean oil) 
• Medium 12: 1 M HCl + PEG-modified canola oil fatty acids (PEG-Canola oil) 
• Medium 13: 1 M HCl + PEG-modified fatty acid methyl ester (PEG-Fatty acid methyl 

ester) 
• Medium 14: 1 M HCl + PEG-modified oleic acid (PEG-Oleic acid) 
• The EIS measurements utilized a standard three-electrode cell setup: 
• Working Electrode: c steel specimen polished and brushed using sandpaper to remove 

oxidable layer.  
• Reference Electrode: Saturated calomel electrode (SCE). 
• Counter Electrode: Platinum wire. 

The Electrochemical impedance spectroscopy was performed utilizing a frequency 
response analyzer in conjunction with a potentiostat. This setup ensured precise maintenance of 
the electrode potential while recording the impedance response. A summary of the specific 
parameters employed during the EIS tests is presented in Table 1.1.   

Table 1.1  EIS Test Parameters 

 

EIS measurements commenced following a stabilization period, allowing the 
electrochemical system to achieve a steady state. Impedance data were collected over the 
designated frequency range to encompass the full electrochemical response. 

The impedance data were analyzed by fitting them to an equivalent circuit model to extract 
key parameters such as solution resistance (Rs), charge transfer resistance (Rct), and constant 
phase element (CPE). These parameters were derived from Nyquist plots, which graph the 
imaginary part of impedance (Z'') against the real part (Z'). 

The equivalent circuit used for analyzing the impedance plots consisted of: 

• R1: Solution resistance (Rs). 
• R2: Charge transfer resistance (Rct). 
• CPE1: Impedance of the constant phase element. 

Parameter Value Description 
AC Signal Amplitude 10 mV The amplitude of the alternating current signal. 

Frequency Range 100 kHz to 10 mHz The range over which impedance was measured. 

Potentiostat Mode Potentiostatic (constant 
potential) 

Maintains a constant electrode potential during 
measurements. 

Equilibration Time At least 3 hours Allows the system to stabilize before measurements. 



   
 

 
 

 

:  

Figure 1.1. Equivalent Circuit Used for Analyzing the Impedance Spectra 

Steps for Measuring Solution and Charge Transfer Resistance 

§ Perform EIS Measurement: Conduct an EIS experiment over a broad frequency range. 

§ Analyse Nyquist Plot: Plot the Nyquist diagram and identify the intercepts and features 
corresponding to Rs and Rct. 

§ Calculation of Parameters: 

• Solution Resistance (Rs): High-frequency intercept on the real axis of a Nyquist plot. 

• Charge Transfer Resistance (Rct): Represents the electron transfer resistance at the 
electrode-electrolyte interface. 

 

2.5.3 Tafel Polarization  

  Equipment Setup and Preparation 

For the Tafel polarization test, a controlled electrochemical setup was utilized, typically 
comprising a potentiostat, a three-electrode cell, and software for data acquisition and analysis. 
The three-electrode system consisted of a working electrode (the metal under test), a reference 
electrode, and a counter electrode. 

  Stabilization of Open Circuit Potential (OCP) 

The metal sample was immersed in the test solution, and the system was allowed to 
equilibrate to the open circuit potential (OCP). This step was crucial as it established a stable 
baseline condition, for the electrochemical system. The OCP is the potential where the net current 
at the electrode surface is zero, indicating that the rates of the anodic and cathodic reactions have 
reached equilibrium. 

Test Parameter Configuration 

The configuration of the test parameters was performed through the software interface of 
the potentiostat. Key parameters entered included: 

• Initial Potential (Einitial): Set 10 mV negative relative to the OCP. This was the starting 
point for the potential sweep. 

• Final Potential (Efinal): Set 10 mV positive relative to the OCP. This defined the endpoint 
of the potential sweep. 



   
 

 
 

 

• Scan Rate: Determined to be approximately 0.125 mV/s. The scan rate was crucial for 
ensuring that the system did not deviate significantly from equilibrium during the test. 

Execution of the Potentiodynamic Polarization Tests 

Once the parameters were set, the potentiodynamic polarization test was initiated. The 
software controlled the potentiostat to apply a linear sweep of potential from the initial to the final 
set values. During this sweep: 

• The potential was incrementally increased from Einitial to Efinal. 
• The current response of the system was continuously measured as the potential was varied. 

Data Acquisition and Plotting 

The current and potential data collected during the tests were automatically recorded by 
the software. This data was used to generate the Tafel plot, which graphed the potential (E) on the 
Y- axis versus the logarithm of the current density (log I) on the X-axis. The Tafel plot was 
essential for analyzing the electrochemical behavior of the metal under the test conditions 

Identification of Linear Regions and Extrapolation 

The Tafel plot typically exhibited linear regions corresponding to the anodic and cathodic 
branches. These regions were critical for the analysis as they reflected the kinetics of the oxidation 
and reduction reactions. Using the software: 

• The linear portions of the anodic and cathodic curves were identified. 
• These linear regions were extrapolated back to their intersection at the corrosion potential 

(Ecorr). 

Calculation of Corrosion Current Density (icorr) 

The intersection points of the extrapolated anodic and cathodic lines provided the corrosion 
current density (icorr), which is a critical parameter directly related to the corrosion rate of the 
metal. Using specialized software, icorr was converted into the corrosion rate by applying 
predefined constants and material properties, such as the metal's equivalent weight (EW) and 
density. Subsequently, the corrosion rate (CR) of the corrosion inhibitor were calculated using the 
following formulas: 

 

• Medium 1: 1 M HCl only (Control) 
• Medium 2: 1 M HCl + Free fatty acids from castor oil (Castor oil) 
• Medium 3: 1 M HCl + Free fatty acids from olive oil (Olive oil) 
• Medium 4: 1 M HCl + Free fatty acids from soybean oil (Soybean oil) 
• Medium 5: 1 M HCl + Free fatty acids from canola oil (Canola oil) 
• Medium 6: 1 M HCl + Free fatty acids from sunflower oil (Sunflower oil) 
• Medium 7: 1 M HCl + Fatty acid methyl ester (Fatty acid methyl ester) 

CR = !!"##"	$%
&'

					 	 	 	 	 	 (1)	



   
 

 
 

 

• Medium 8: 1 M HCl + Commercial Oleic Acid (Oleic acid) 
• Medium 9: 1 M HCl + PEG-modified castor oil fatty acids (PEG-Castor oil) 
• Medium 10: 1 M HCl + PEG-modified olive oil fatty acids (PEG-Olive oil) 
• Medium 11: 1 M HCl + PEG-modified soybean oil fatty acids (PEG-Soybean oil) 
• Medium 12: 1 M HCl + PEG-modified canola oil fatty acids (PEG-Canola oil) 
• Medium 13: 1 M HCl + PEG-modified fatty acid methyl ester (PEG-Fatty acid methyl 

ester) 
• Medium 14: 1 M HCl + PEG-modified oleic acid (PEG-Oleic acid) 

 

2.6 Static Weight Loss in 1M HCl 

The experiments were conducted over the course of one week to evaluate the corrosion 
behavior of various inhibitors. To minimize oxygen exposure and maintain consistent 
environmental conditions, all test beakers were placed inside a fume hood. Prior to immersion, 
each A36 carbon steel coupon was carefully weighed to record its initial mass with high precision. 
Following the exposure period, the coupons were retrieved and cleaned to remove any corrosion 
products. Cleaning involved scrubbing under running water using a bristle brush, followed by 
rinsing with acetone. The cleaned coupons were then dried in acetone to eliminate residual 
moisture before being reweighed to determine their final mass. 

Corrosion was quantified by weight loss, calculated as the difference between the initial 
and final mass. This metric enabled a direct comparison of the protective effectiveness of the tested 
inhibitors, which included free and PEG-modified fatty acids derived from soybean, canola, 
sunflower, olive, and castor oils, as well as fatty acid methyl esters and commercial oleic acid in 
both unmodified and PEG-modified forms. A harsh testing environment, 1 M hydrochloric acid 
(HCl), was used to simulate aggressive corrosion conditions and identify the most effective 
inhibitors under extreme scenarios. 

3. Result and Analysis 

3.1 Electrochemical Corrosion Testing 

3.1.1 Electrochemical Impedance Spectroscopy (EIS) 

Electrochemical Impedance Spectroscopy (EIS) was employed to evaluate the corrosion 
inhibition performance of unmodified and PEG-modified fatty acid-based inhibitors in 1 M HCl. 
The key parameters extracted from the EIS spectra include solution resistance (Rs), polarization 
resistance (Rp), constant phase element (CPE), and the phase shift factor (n), with inhibition 
efficiency calculated from Rp values. A higher Rp value correlates directly with enhanced 
corrosion protection, as it reflects the ability of the inhibitor to hinder charge transfer processes at 
the metal–electrolyte interface. 



   
 

 
 

 



   
 

 
 

 

 

Figure 1.2. EIS plots of unmodified (up) and modified free fatty acid mixes (down) 

Table 1.2. EIS test results of unmodified free fatty acid mixes in 1M HCL and associated inhibition efficiency 
results of unmodified and associated inhibition efficiency 

 

 

 

 

Table 1.3. EIS test results of modified free fatty acid mixes in 1M HCL and associated inhibition efficiency results 
of unmodified and associated inhibition efficiency 

Sample Rs (solution 
resistance) (Ω cm2) 

RP (Polarization 
resistance) (Ω cm2) 

CPE (constant phase 
element) (F/s) n Inhibition 

efficiency (%) 
Control 1.232 298.6 8.8 * 10-4 0.838 ------- 

Canola oil 21.500 2889.3 1.43 * 10-5 0.860 89.66 
Castor oil 0.926 473.6 3.35 * 10-5 0.949 36.95 

Sunflower oil 0.77 1545 5.44 * 10-5 0.855 80.67 
Olive oil 1.313 1258 3.85 * 10-5 0.851 76.3 

Soybean oil 0.680 1163 7.89 * 10-5 0.664 74.3 
Oleic Acid 1.123 967.9 5.9 * 10-5 0.894 69.1 
Fatty acid 

methyl ester 1.217 1548 3.16 * 10-5 0.744 80.71 



   
 

 
 

 

 

For the unmodified inhibitors (Table 1.2), the control sample exhibited a baseline Rp of 
298.6 Ω·cm², with all inhibitors showing substantial improvements. Canola oil achieved the 
highest Rp of 2889.3 Ω·cm², corresponding to an inhibition efficiency of 89.66%. FAME and 
sunflower oil showed comparable performances with efficiencies of 80.71% and 80.67%, 
respectively. Olive oil and soybean oil exhibited inhibition efficiencies of 76.3% and 74.3%, while 
castor oil performed significantly lower at 36.95%. Oleic acid showed moderate effectiveness with 
69.1% inhibition. These results align with trends observed in the Tafel data, confirming the 
relatively high effectiveness of fatty acid mixtures from canola, sunflower, and soybean oils in 
reducing corrosion. 

Upon PEG modification (Table 1.3), all systems demonstrated marked improvements in 
Rp and inhibition efficiency. Canola oil showed the most substantial increase, with Rp rising from 
2889.3 Ω·cm² to 9169 Ω·cm², boosting its inhibition efficiency from 89.66% to 96.74% (+7.08 
percentage points). Similarly, sunflower oil improved from 80.67% to 92.4% (+11.73 points), and 
soybean oil from 74.3% to 88.48% (+14.18 points). Olive oil increased from 76.3% to 86.4% 
(+10.1 points), and oleic acid showed improvement from 69.1% to 74.9% (+5.8 points). FAME 
also exhibited enhanced performance, with inhibition efficiency increasing from 80.71% to 85.5% 
(+4.79 points). Notably, even castor oil, which initially had low performance, improved from 36.95% 
to 69.8%, a substantial 32.85-point increase, indicating the significant benefit of PEG 
functionalization in cases with initially poor inhibition. 

These findings confirm that PEG modification consistently increases the effectiveness of 
fatty acid-based inhibitors by improving their adsorption characteristics, forming more compact 
and protective interfacial films, and enhancing the resistance to charge transfer, as reflected in the 
increased Rp values. 

3.1.2 Tafel Polarization  

The corrosion inhibition performance of both unmodified and PEG-modified free fatty acid 
mixtures was systematically investigated using Tafel polarization measurements in 1 M HCl 
solution. The polarization curves provide insights into the electrochemical behavior of the A36 
carbon steel surface in the presence of different inhibitor systems. Figure 1.3 presents the Tafel 

Sample Rs (solution 
resistance) (Ω cm2) 

RP (Polarization 
resistance) (Ω cm2) 

CPE (constant phase 
element) (F/s) n Inhibition 

efficiency (%) 
Control 1.232 298.6 8.8 * 10-4 0.838 ------- 

Canola oil 2.1 9169 3.35 * 10-6 0.789 96.74 
Castor oil 1.173 989.6 8.2 * 10-5 0.812 69.8 

Sunflower oil 1.124 3932 1.54 * 10-5 0.865 92.4 
Olive oil 1.046 2197 1.8 * 10-5 0.835 86.4 

Soybean oil 1.318 2591 2.27 * 10-5 0.823 88.48 
Oleic Acid 0.9898 1189 2.9 * 10-5 0.898 74.9 
Fatty acid 

methyl ester 0.9562 2095 1.9 * 10-5 0.900 85.5 



   
 

 
 

 

polarization plots for tested samples, highlighting the clear shift in corrosion potential (Ecorr) and 
significant reduction in corrosion current density (Icorr) upon the addition of both unmodified and 
PEG-modified inhibitors. These shifts are indicative of suppressed anodic and/or cathodic 
reactions on the steel surface, resulting in reduced corrosion rates. The extent of this suppression 
was quantified in terms of inhibition efficiency, calculated from Icorr values, and is analyzed in 
detail below. 

 

 



   
 

 
 

 

 

Figure 1.3. Tafel Polarization plots of unmodified (up) and modified free fatty acid mixes (down) 

Table 1.4. TAFEL test results of unmodified free fatty acid mixes in 1M HCL and associated inhibition efficiency 
results of unmodified and associated inhibition efficiency 

Sample Ecorr (mV) Icorr (μA/cm2) CR (mmpy) Inhibition efficiency (%) 
Control -357 57.1 0.6603 ------- 

Canola oil -417.3 9.2 0.1064 83.89 
Castor oil -467.5 14.86 0.1718 73.97 

Sunflower oil -464.6 6.7 0.07748 88.3 
Olive oil -485.3 4.89 0.0565 91.43 

Soybean oil -431.9 6.025 0.06967 89.45 
Oleic Acid -382.3 41.1 0.4753 28.02 

Fatty acid methyl ester -436.7 7.551 0.0873 86.78 
 

 

 

Table 1.5. TAFEL test results of unmodified free fatty acid mixes in 1M HCL and associated inhibition efficiency 
results of unmodified and associated inhibition efficiency 



   
 

 
 

 

 

The inhibition efficiencies of both unmodified and PEG-modified fatty acid-based 
inhibitors were evaluated using Tafel polarization data in a 1 M HCl solution (Table 1.4 and 1.5). 
The control sample, which did not contain any inhibitor, served as the baseline for comparison. 
Among the unmodified inhibitors, fatty acids derived from olive oil showed the highest inhibition 
efficiency at 91.43%, followed by soybean oil at 89.45%, sunflower oil at 88.3%, and fatty acid 
methyl esters (FAME) at 86.78%. Canola oil achieved an efficiency of 83.89%, while castor oil 
had the lowest efficiency among the natural oils at 73.97%. Pure oleic acid, utilized as a model 
compound, exhibited a significantly lower efficiency of 28.02%, highlighting the superior 
performance of natural fatty acid mixtures, likely due to possible synergistic effects. 

After modification with PEG (Table 1.5), all inhibitors (excluding FAME) showed a 
marked improvement in efficiency. Olive oil increased from 91.43% to 95.7%, gaining 4.27 
percentage points. Canola oil improved significantly from 83.89% to 95.5%, an increase of 11.61 
points. Sunflower oil rose from 88.3% to 94.6%, with an increase of 6.3 points, while soybean oil 
improved from 89.45% to 91.9%, a rise of 2.45 points. Castor oil increased from 73.97% to 79.03%, 
showing a gain of 5.06 points. The most notable enhancement was observed in oleic acid, which 
surged from 28.02% to 75.3%, a remarkable increase of 47.28 points. Conversely, FAME 
experienced a slight reduction in inhibition efficiency, dropping from 86.78% to 86.3%, a decrease 
of 0.48 points, suggesting that PEG modification did not further enhance its already high 
performance. 

These quantitative findings confirm that PEG functionalization significantly boosts the 
corrosion inhibition effectiveness of fatty acid-based inhibitors, particularly for those with initially 
moderate efficiencies, by improving their solubility, surface activity, and film-forming properties. 

3.1.3 Static Weight Loss in 1M HCl 

Weight loss measurements were used to evaluate the corrosion inhibition performance of 
both unmodified and PEG-modified fatty acid-based inhibitors in 1M HCl over a one-week 
immersion period. The corrosion rate for each inhibitor was compared to that of the control sample 
(blank, uninhibited 1M HCl solution) to calculate the inhibition efficiency, providing a direct 
quantitative measure of each inhibitor's protective capability.  

Table 1.6. Static weight loss test results of unmodified free fatty acid mixes in 1M HCL and associated inhibition 
efficiency 

Sample Ecorr (mV) Icorr (μA/cm2) CR (mmpy) Inhibition efficiency (%) 
Control -357 57.1 0.6603 ------- 

Canola oil -389.5 2.558 0.02958 95.5 
Castor oil -471.2 11.97 0.1384 79.03 

Sunflower oil -438.5 3.1 0.0358 94.6 
Olive oil -447.3 2.4 0.02775 95.7 

Soybean oil -468.7 4.6 0.0532 91.9 
Oleic Acid -452.75 14.104 0.1631 75.3 

Fatty acid methyl ester -457.2 7.813 0.0903 86.3 



   
 

 
 

 

 

Table 1.7. Static weight loss test results of modified free fatty acid mixes in 1M HCL and associated inhibition 

efficiency 

 

The results show that all inhibitor systems reduced the corrosion rate of A36 carbon steel 
to varying degrees, with PEG-modified inhibitors consistently outperforming their unmodified 
counterparts. Among the unmodified fatty acid inhibitors (Table 1.6), canola oil-derived fatty acids 
exhibited the highest inhibition efficiency (88.96%), followed by fatty acid methyl ester and those 
derived from sunflower oil. This trend suggests that the fatty acid composition of each oil source, 

Inhibitor Measured weight Average Weight Loss (g) Corrosion (%) Inhibitor 
Efficiency (%) 

Control Weight before corrosion 3.828 -0.526 -13.74% - Weight after corrosion 3.302 

Canola oil Weight before corrosion 3.796 -0.058 -1.52% 88.96% Weight after corrosion 3.739 

Castor oil Weight before corrosion 3.827 -0.379 -9.91% 27.89% Weight after corrosion 3.448 
Sunflower 

oil 
Weight before corrosion 3.835 -0.166 -4.33% 68.49% Weight after corrosion 3.669 

Olive oil Weight before corrosion 3.822 -0.322 -8.42% 38.72% Weight after corrosion 3.500 

Soybean oil Weight before corrosion 3.829 -0.454 -11.86% 13.67% Weight after corrosion 3.375 

Oleic Acid Weight before corrosion 3.812 -0.272 -7.12% 48.16% Weight after corrosion 3.541 
Fatty acid 

methyl ester 
Weight before corrosion 3.806 -0.138 -3.63% 73.59% Weight after corrosion 3.668 

Inhibitor Measured weight Average Weight Loss (g) Corrosion (%) Inhibitor 
Efficiency (%) 

Control Weight before corrosion 3.817 -0.601 -15.74% - Weight after corrosion 3.216 

Canola oil Weight before corrosion 3.841 -0.037 -0.97% 93.81% Weight after corrosion 3.804 

Castor oil Weight before corrosion 3.802 -0.049 -0.013 91.78% Weight after corrosion 3.753 

Sunflower oil Weight before corrosion 3.826 -0.055 -1.44% 90.88% Weight after corrosion 3.771 

Olive oil Weight before corrosion 3.831 -0.061 -1.59% 89.93% Weight after corrosion 3.770 

Soybean oil Weight before corrosion 3.819 -0.043 -1.12% 92.89% Weight after corrosion 3.776 

Oleic Acid Weight before corrosion 3.772 -0.055 -1.46% 90.69% Weight after corrosion 3.717 
Fatty acid 

methyl ester 
Weight before corrosion 3.821 -0.045 -1.19% 92.46% Weight after corrosion 3.776 



   
 

 
 

 

particularly the degree of unsaturation and chain length, plays a key role in adsorption behavior 
and protective film formation. Canola oil, which contains a high proportion of oleic acid, likely 
provides a more uniform and adherent film on the steel surface, leading to better corrosion 
resistance. 

Upon PEG modification (Table 1.7), the inhibition efficiency improved across all oil types. 
PEG-modified canola oil again demonstrated the most effective inhibition, indicating that the 
incorporation of polyethylene glycol enhances surface activity and film stability. The amphiphilic 
nature of the PEG-functionalized molecules likely contributes to stronger interactions with the 
metal surface and improved dispersion in the aqueous acidic environment, resulting in a more 
compact and persistent protective layer. PEG-modified soybean and canola oil-based inhibitors 
also showed marked performance improvements, confirming that the PEGylation step enhances 
inhibition efficiency regardless of the original oil source. 

Overall, the weight loss data confirm the effectiveness of bio-derived inhibitors in reducing 
steel corrosion under highly acidic conditions. The comparison of inhibitor performance to the 
control sample revealed significant reductions in mass loss, highlighting the value of PEG 
modification in boosting inhibitor efficiency. These findings demonstrate that molecular structure, 
specifically the presence of functional groups like PEG, greatly influences the ability of fatty acid-
based inhibitors to form stable, corrosion-resistant films on steel surfaces. The results also support 
the potential of castor and soybean oil derivatives as leading candidates for environmentally 
friendly corrosion inhibition in aggressive environments such as 1 M HCl. 



   
 

 
 

 

 

 

 

 

 

 

 

 

Appendix 2 
Technical Progress Description for Task 2 
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Task 2. Simulation-based Inhibitor Implementation Optimization in Gas 
Gathering and Transportation Pipelines 

 

1. Introduction 

1.1 Background 

Corrosion inhibitors are widely used in the natural gas pipeline industry to mitigate internal 
corrosion and extend service life. In practical applications, two primary delivery strategies are 
commonly employed: batch application, in which inhibitors are introduced intermittently through 
pigging or slugging operations, and continuous injection, which delivers inhibitors at specific 
locations along the pipeline. In our ongoing research, we have focused on the latter approach, as 
it offers a promising route for spatially targeted mitigation, especially in gas pipelines where 
localized corrosion is often driven by discrete moisture accumulation. Such accumulations 
commonly occur near geometric irregularities, where water tends to condense and settle, creating 
high-risk environments that are not easily addressed by global dosing strategies. 

In the previous phase of this study, we developed a CFD-based simulation framework to 
model the long-range transport of inhibitor particles introduced into the gas stream. The goal was 
to establish a predictive mapping between injection parameters and the resulting deposition 
patterns along the pipe wall. While this approach proved effective in optimizing global coverage, 
it was inherently limited in its ability to deliver concentrated protection at localized high-risk 
regions, where corrosion typically initiates. These limitations highlight the need for a more 
regionally adaptive injection strategy. 

A more efficient approach is to place atomizer-based injection devices near these high-risk 
regions, enabling direct and localized delivery of inhibitors. However, due to the large spatial 
extent and structural complexity of pipeline networks, it is impractical to rely on full-domain CFD 
simulations for each injection scenario. Therefore, in the present study, we construct a short-range 
inhibitor transport model to simulate particle deposition behavior under a range of representative 
local conditions. This enables fast and targeted prediction of deposition outcomes for practical use. 

To systematize this approach, we propose an integrated corrosion management framework 
comprising three interconnected components: 

(1) High-risk Location Identification, using the Internal Corrosion Direct Assessment (ICDA) 
methodology to pinpoint regions prone to moisture accumulation and corrosion initiation; 

(2) Atomizer Setting Optimization, in which CFD simulation and learning-based models are used 
to derive efficient injection configurations for targeted protection; 

(3) Prediction of Inhibitor Degradation, which accounts for the time-dependent loss of protective 
effectiveness and informs replenishment planning. 

Where the third component was preliminarily addressed in our previous work, where a degradation 
model was developed to simulate the decline in inhibitor performance over time. 
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1.2 Objectives 

The primary objective of this phase is to construct an integrated framework for risk-guided, 
localized corrosion inhibitor injection, targeting the most vulnerable segments of gas pipelines. To 
achieve this, the study is structured around two key components: (1) identifying high-risk locations 
and (2) optimizing atomizer injection settings for localized protection. 

The first component focuses on identifying regions along the pipeline that are especially 
prone to internal corrosion. To this end, the study implements an ICDA-based assessment using 
elevation profiles, pressure, and temperature data to evaluate condensation potential and slope-
induced fluid retention. A critical slope threshold is applied to identify zones where water 
accumulation is likely, which are then scored to produce a spatial corrosion risk map. 

The second component introduces a short-range particle transport model tailored for 
inhibitor delivery near these high-risk segments. Unlike previous long-range dispersion models, 
this approach focuses on localized deposition in common geometric configurations such as elbows 
and sags. CFD simulations are conducted to evaluate key parameters, including orifice width, 
particle density, injection rate, and flow velocity, which affect particle-wall deposition behavior. 
Two typical transport behaviors are observed: 1) Ballistic-like transport, where particles with 
higher inertia follow parabolic paths and deposit quickly near the injection point; 2) Dispersion-
dominated transport, in which smaller particles travel farther with the gas flow and deposit 
gradually after collision and aggregation. Based on these simulation results, a neural network 
model is trained to map desired deposition profiles and environmental conditions to the 
corresponding atomizer settings. The model takes as input the environment parameters and flow 
information, and outputs optimal injection parameters. This framework enables rapid optimization 
of injection strategies without requiring new CFD simulations for every condition, thereby 
supporting practical deployment across complex pipeline networks. 

By integrating the three components of our framework containing risk detection, targeted 
deposition, and time-dependent degradation modeling, this study establishes a structured strategy 
for corrosion mitigation. This three-step framework, illustrated in Figure 1, enables injection 
resources to be allocated based on actual corrosion risk and pipeline configuration, thereby 
enhancing both protection efficiency and inhibitor utilization. 

 
Figure 2.1: Framework of pipeline corrosion protection based on injection application. 
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2. Methodology 

2.1 High-risk location identification based on ICDA 

In this study, the identification of high-risk corrosion locations serves as the starting point 
for region-specific corrosion mitigation. Recognizing that internal corrosion in gas pipelines often 
originates from water accumulation in geometrically unfavorable regions, such as sags or elbows, 
this section applies the ICDA methodology to evaluate risk along the pipeline. By integrating 
topographical and thermodynamic information, the ICDA framework enables the detection of 
localized condensation zones and stagnant regions that may lead to corrosion initiation. The 
assessment begins by analyzing the pipeline’s elevation profile and computing the temperature 
and pressure distribution under standard operational conditions. These are used to determine the 
dew point of the gas phase and identify segments where the local wall temperature falls below this 
threshold. Additionally, slope analysis is performed to calculate the inclination between adjacent 
pipe segments. When the slope falls below a critical threshold, fluid retention is more likely to 
occur, further increasing corrosion risk. 

2.1.1 Overview of ICDA-based high-risk location identification 

Only limited segments of transmission pipelines—primarily those located in mountainous 
terrain with lower dew points for water condensation—are at risk for standing water accumulation 
and the associated threat of internal corrosion. The specific geometric details and layouts of such 
pipeline segments are often confidential due to safety and commercial concerns. Consequently, 
identifying these high-risk locations is regarded as a high-value technical challenge, and the use 
of standard methodologies such as NACE SP0206 and SP0110 is strongly recommended. These 
standards provide guidelines for determining critical inclination angles and assessing fluid 
chemistry conditions relevant to internal corrosion under standing water environments. A 
schematic demonstration of such a high-risk region is illustrated in Figure 2, where condensation-
induced droplets accumulate in regions with insufficient slope, where condensed liquid may not 
be effectively drained by gravity =. This case visually represents the type of localized geometric 
configuration in high risk where inhibitors must be strategically applied.  

 
Figure 2.2: Illustration of water accumulation in a low-slope segment of gas pipeline. 

To systematically identify such vulnerable regions, we adopt key principles from ICDA to 
implement a four-step assessment process: 

•  Input collection: gather essential pipeline properties, including elevation profile, 
temperature distribution and operating pressure. 

• Dew point and condensation risk estimation: compute dew point based on environment 
parameters to identify zones where condensation occurs in a high likelihood. 
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• Slope and inclination analysis: compute the local slope of the pipeline and compare it 
against an inclination threshold as suggested by industry experience and ICDA standards. 
Segments below this threshold are flagged as prone to liquid retention. 

• Risk scoring and visualization: Integrate condensation risk and slope flatness to produce 
a composite risk score. This enables the generation of a spatial risk map to prioritize 
inhibitor injections at key locations. 

2.1.2 Numerical implementation of ICDA-based risk identification 

To illustrate the ICDA-based risk identification procedure, a representative pipeline 
segment was constructed under synthetic conditions. While not intended to reflect a specific real-
world case, this example serves to demonstrate the computational process and the integration of 
thermodynamic and geometric considerations. 

Table 1 summarizes the input parameters, including the initial gas temperature and pressure, 
soil temperature, and heat transfer coefficient. A 2000-meter pipeline is discretized into 300 
segments, and the elevation profile is generated by superimposing sinusoidal functions with 
smoothed white noise, simulating topographic variation. The gas temperature along the pipeline is 
updated iteratively using a simple heat exchange model:  

    𝑇( = 𝑇( − 𝐾 ∙ (𝑇()* − 𝑇+) ∙ ∆𝑥               (2.1) 

where the Heat transfer coefficient K is set as 0.001. The dew point temperature 𝑇,-. is estimated 
empirically as a linear function of local gas pressure, following field-derived correlations: 

    𝑇,-. = 10 + 0.4 ∙ (𝑃 − 30)               (2.2) 

where the Operating pressure 𝑃 is modeled as a function of elevation, assuming greater elevation 
leads to higher frictional losses: 

     𝑃(𝑥) = 𝑃/ −
(1(2))1$%&)

4//
               (2.3) 

where ℎ(𝑥) denotes the elevation at distance 𝑥 and ℎ5(6 is the minimum elevation. As shown in 
Figure 3, condensation risk is identified in regions where the gas temperature drops below the dew 
point. These segments are preliminarily flagged as potential liquid formation zones. 

Table 1. Simulation parameters for ICDA-based pipeline condition modeling. 
Parameter Value 

Number of discrete points 300 
Distance 𝑥 0 - 2000 m 

Initial temperature 𝑇' 30 °C 
Initial pressure 𝑃' 50 bar 

Soil temperature 𝑇( 10 °C 
Heat Transfer Coefficient 𝐾 0.001 
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Figure 2.3: Gas temperature and dew point distribution along pipeline. 

Subsequently, local slopes are computed from the elevation profile. As illustrated in Figure 
4, segments with slopes below a critical threshold (taken here as 0.3°) are flagged as prone to water 
retention. Red markers indicate locations where both condensation and low-slope conditions are 
met, representing potential high-risk zones for internal corrosion. This outcome serves as a starting 
point for subsequent injection optimization in the overall framework. 

 
Figure 2.4: Elevation profile and high-risk water accumulation points. 

 

2.2 AI-enhanced prediction of optimal atomizer settings 

2.2.1 Effect of CFD parameters on particle transport 

To enable the development of an Injection Control Network (ICN) for optimal atomizer 
setting prediction, it is essential to first understand the short-range transport mechanisms of 
inhibitor particles and identify the dominant influencing factors. Unlike long-distance transport 
dominated by fluid-phase advection, localized injection presents a distinct balance between 
gravitational settling and flow-induced drag. The gravitational force acting on an individual 
particle is governed by: 

     𝐹7 =
*
8
𝜋𝜌9𝑑9:𝑔               (2.4) 
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where 𝜌9  is the particle density, 𝑑9  is the particle diameter, and 𝑔 = 9.81𝑚 ∙ 𝑠4  denotes the 
gravitational acceleration. The density and diameter directly affect the particle’s weight and 
settling tendency, while the flow velocity contributes to drag force and controls the horizontal 
transport distance before deposition occurs. Among these, flow velocity is considered an 
environmental constraint, typically fixed by pipeline operation. In contrast, particle diameter and 
density are controllable through the design of injection settings, particularly the orifice width and 
injection speed, which influence droplet breakup and atomization characteristics. These 
controllable parameters are therefore the primary focus in optimizing atomizer configurations. 

It is important to note that gravitational force is only one of several forces acting on an injected 
particle. In addition to drag, which dominates forward transport, particles also experience lift 
forces due to velocity gradients and flow separation, especially near boundary layers. As particle 
size decreases, the influence of gravity diminishes relative to these fluid-mediated forces. This 
effect is particularly pronounced for small particles, whose motion can become highly sensitive to 
turbulent fluctuations or streamline distortion. As illustrated in Figure 5, particles with identical 
density but smaller diameters, such as those around 1×10⁻⁴ m, exhibit significant deviation from 
idealized ballistic trajectories. Their paths are increasingly influenced by local fluid disturbances, 
resulting in irregular or dispersed motion. This transition from gravity-dominated ballistic 
transport to flow-coupled dispersion highlights the need for careful parameter control in atomizer 
design, particularly when targeting precise deposition patterns. 

  
Figure 2.5: Transport behavior of particles with different magnitudes of diameters. 

To explore the impact on deposition behavior, we present and analyze particle distributions 
and deposition profiles for several CFD cases with orifice widths of 6×10⁻⁴ m, 5×10⁻⁴ m, 4×10⁻⁴ 
m and 3×10⁻⁴ m when the particle density is 1100kg/m3, respectively. Each case is supported by 
the spatial distribution of particles within the pipe and wall-deposition amount. 

To explore the impact on deposition behavior, we present and analyze particle distributions 
and deposition profiles for several CFD cases with orifice widths, which determines the initial 
particle diameter via atomization behavior, as shown in Figure 2.6. To better capture realistic 
particle evolution, the discrete phase model includes coalescence and breakup interactions, 
enabling a more accurate representation of particle size dynamics during injection and transport. 
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(a) orifice width = 6×10⁻⁴ m. 

 

(b) orifice width = 5×10⁻⁴ m. 

 

(c) orifice width = 4×10⁻⁴ m. 

Figure 2.6: Particle transport behavior under different orifice widths. 

The result in Figure 2.6 (a) with an orifice width of 6×10⁻⁴ m exhibits particle diameters 
mostly around the order of 10⁻³ m, leading to rapid settling due to strong gravitational influence. 
The particles follow ballistic trajectories, resembling projectile motion, and deposit over a short 
horizontal distance. This regime is therefore referred to as ballistic transport. In contrast, results 
from Figure 2.6 (b) and Figure 2.6 (c), with narrower orifices of 5×10⁻⁴ m and 4×10⁻⁴ m, generate 
particles primarily below 10⁻⁴ m in diameter. These smaller particles exhibit lower settling 
velocities and are more strongly influenced by the surrounding fluid flow, resulting in broader 
axial dispersion and delayed deposition. This behavior corresponds to a dispersion-dominated 
regime, where drag forces outweigh gravitational effects. 

Figure 2.7 further presents the evolution of wall deposition profiles under varying orifice 
widths, further illustrating the gradual shift in transport regime from dispersion-dominated to 
ballistic behavior. In this demonstration, a comparison between orifice widths just below and 
above the transition threshold reveals the shift in deposition behavior more clearly. For orifice 
widths below 5.4×10⁻⁴ m, the deposition curves resemble right-skewed F-distributions with long 
tails, reflecting dispersion-dominated transport. As the orifice widens, particle size increases, 
leading to shorter transport distances and a higher accumulation of deposited particles within the 
computational domain. At 5.4×10⁻⁴ m, the system enters a transitional regime. The deposition peak 
becomes more pronounced, but its shape also begins to distort. This marks the onset of ballistic-
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dominated transport, where heavier particles settle more quickly. Beyond 5.6×10⁻⁴ m, the 
deposition profile adopts a steep-front, flat-decay pattern. The peak position stabilizes spatially, 
but its magnitude decreases due to a broader frontal dispersion. This shape is characteristic of 
ballistic transport, where gravity rapidly dominates particle motion, producing a plateau-like 
decline rather than a long tail.  

 

Figure 2.7: Evolution of particle deposition under different orifice widths. 

Understanding the underlying particle transport regimes helps to anticipate deposition 
patterns under different injection parameters and thus informs the optimization strategy. For 
example, based on the above demonstration, orifice widths greater than 5.2×10⁻⁴ m can be used as 
a threshold to ensure that particles enter either the transitional or ballistic regime, thereby 
promoting more concentrated and efficient deposition near the targeted region. 

2.2.2 Training of Injection Control Network to optimize atomizer setting 

To efficiently determine optimal atomizer settings for targeted particle deposition, an 
Injection Control Network (ICN) is constructed and trained based on CFD-derived data. The 
overall learning-based optimization framework is illustrated in Figure 2.8. The ICN first learns a 
forward mapping from a given combination of injection parameters and environmental conditions 
to the resulting deposition distribution. Once trained, the model is used inversely: instead of 
prescribing an entire deposition profile, only selected output locations are constrained to meet 
engineering requirements typically by enforcing that deposition values exceed a predefined 
threshold. This targeted constraint is then used to guide gradient-based backpropagation through 
the ICN, while also respecting bounds or feasibility constraints on the atomizer input parameters, 
enabling inverse optimization of spray settings. 
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Figure 2.8: Problem description of optimal atomizer setting with Injection Control Network. 

While the design framework incorporates multiple parameters—including injection rate, 
particle density, orifice height, and spray angle—this study focuses on a minimal and 
representative subset to demonstrate the feasibility of the approach. As shown in Figure 2.9, the 
ICN model inputs include injection spread angle 𝑎+, orifice width 𝑤 and flow velocity 𝑣;. The 
output is the Fourier spectrum of the deposition profile at each spatial location, capturing both 
amplitude and phase information via real and imaginary parts. This spectral representation reduces 
spatial sensitivity and facilitates smoother optimization during backpropagation. Importantly, 
injection time is not explicitly considered as a network input. As demonstrated in Figure 2.10 
(bottom middle), deposition magnitude increases approximately proportionally with time, 
preserving the spatial profile shape. This allows time-based scaling to be applied externally during 
inference, significantly simplifying model complexity. 

                     

                                            (a)                                                                     (b) 

Figure 2.9: Illustration of ICN architecture at (a) forward inference and (b) backward optimization. 
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Figure 2.10: Demonstration of proportional scaling in deposition magnitude with time in cases of (a) the ballistic 
transport and (b) the dispersion transport. 

To train the ICN, a dataset is generated by sampling across three selected parameters, where 
𝑎+ ∈ {20°, 25°, 30°}, 𝑤 ∈ [3 × 10)<, 6 × 10)<] m (15 uniform intervals) and 𝑣; ∈ [1.0, 2.0] m/s 
(10 uniform intervals). Testing samples are randomly selected within the same parameter ranges 
to validate the model’s generalization ability, as shown in Figure 2.11. 

 

Figure 2.11: Testing results of the well-trained ICN under different input parameters with (a) 𝑎( = 25.3080, 𝑤 =
3.1619 × 10)* and 𝑣+ = 1.0759, (b) 𝑎( = 20.0463, 𝑤 = 5.8857 × 10)* and 𝑣+ = 1.1067, (c) 𝑎( = 25.1325, 

𝑤 = 4.0529 × 10)* and 𝑣+ = 1.6221 and (d) 𝑎( = 28.6869, 𝑤 = 5.4519 × 10)* and 𝑣+ = 1.7749. 

Once the ICN is trained, it enables inverse optimization by adjusting input parameters to 
achieve desired deposition characteristics. For illustration, we assume that particle accumulation 
should exceed 0.05 kg/m in a localized region 𝑥 ∈ [2, 3] . Multiple combinations of atomizer 
settings may satisfy this condition. To guide the optimization toward practically desirable solutions, 
additional input-side constraints can be incorporated into the loss function. 

In Example 1, a preference for dispersion-dominated transport is enforced by referencing 
the response surface shown in Figure 2.12. Based on the identified regime boundary between 
dispersion and ballistic behavior, additional condition 𝑤 > 4.5 × 10)<  is set to encourage the 
optimizer to favor dispersion-dominated transport regimes. In this cases, the loss function with a 
regularization term is written as: 
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  𝐿𝑜𝑠𝑠 = ∑ReLU(0.05 − 𝑦() + ReLU(4.5 × 10)= −𝑤)               (2.5)	

 

Figure 2.11: Testing results of the well-trained ICN under different input parameters with  

In Example 2, a design constraint on the maximum spread angle is introduced by limiting 
the injection angle to 𝑎+ > 20°, which may arise due to structural or manufacturing limitations. 
Correspondingly, the loss function is written as: 

  𝐿𝑜𝑠𝑠 = ∑ReLU(0.05 − 𝑦() + ReLU(25 − 𝑎+)               (2.6)	

These added constraints reshape the feasible design space and shift the optimizer toward solutions 
that align with engineering realities. 

The above flexible formulation allows ICN-based optimization to account not only for 
output accuracy but also for operational preferences and physical feasibility—enabling practical 
deployment in real-world design scenarios. 

3. Future research 

While the current phase has successfully developed a predictive framework for inhibitor 
transport and deposition, the lack of field validation and the limited understanding of how 
deposition patterns translate to actual protective performance remain critical limitations. The next 
phase of research will therefore shift focus toward experimental measurement, data-driven 
assessment, and risk quantification. 

Based on the discussion and comments from TAP members, two potential directions have 
emerged from the initial analysis and discussions. One involves the development of methods, for 
characterizing key properties of the inhibitor film, such as thickness, distribution, and coverage. 
The other focuses on simulating direct injection method for long distance travel and water-soluble 
inhibitor in gathering pipelines. These two directions may serve as complementary paths to 
strengthen the link between model predictions and real-world corrosion risk, depending on 
feasibility and industry relevance. 
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In parallel, AI-assisted image recognition techniques are considered as a means to automate 
the detection and classification of inhibitor film coverage and localized corrosion features. If 
validated, these algorithms could enable fast and consistent analysis, both in laboratory settings 
and potentially in field applications. 

Additionally, the construction of a multi-factor corrosion safety index is under preliminary 
discussion, which would aim to integrate measurement data, model outputs, and operational 
parameters into a unified risk framework. This could lay the groundwork for a lightweight 
decision-support tool, enabling engineers to better assess corrosion risks and adapt injection 
strategies accordingly. 

These proposed efforts, if pursued, would help bridge the gap between computational 
modeling and field implementation, improving both the diagnostic accuracy and practical 
applicability of inhibitor optimization strategies in complex pipeline systems.



   
 

32 
 32 

References  

1. Al-Moubaraki, A. H., and I. B. Obot, Top of the line corrosion: causes, mechanisms, and 
mitigation using corrosion inhibitors. Arabian Journal of Chemistry, 2021. 14(5): p. 
103116. 

2. Jayaweera C D, Fernandes del Pozo D, Hitsov I P, et al. Assessing the feasibility of using 
a data-driven corrosion rate model for optimizing dosages of corrosion inhibitors[J]. npj 
Materials Degradation, 2024, 8(1): 127. 

 

 

  


